Methodology for Freestanding Development.

Amlal El Mahrouss
amlal@nekernel.org

December 2025
Last Edited: January 2026

W N =

Abstract

Many low-level software have been shipped using the C programming language. And some
of them, such as EKA2 use the C++ programming language. Although notoriously difficult,
one may adapt to those constraints in order to deliver one such operating system kernel. This
is why most production-grade software (Linux, XNU, and NT) are mostly written in C. With
a higher-level subset in C++. However, when correctly applying the following principles to
freestanding development, it becomes much easier to ensure correctness of such programs.

1 The Three Principles of Freestanding Development.

1.1 1I: The Run-Time Evaluation Domain.

The problem lies in the programming language runtime, which assumes an existing host. The
contrary of a hosted environment is freestanding, a computing mode which doesn’t expect
a hosted runtime. Such programs may use the compile-time evaluation domain to achieve
minimal run-time domain usage.

1.2 1II: The Compile-Time Evaluation Domain.

One may avoid Virtual Method Tables or a runtime when possible. While focusing instead
on meta-programming and compile-time features offered by C++. For example one may use
templates to implement a scheduling policy algorithm. One example of such implementation
may be:

struct FileTree final {

static constexpr bool is_virtual_memory = false;
static constexpr bool is_memory = false;
static constexpr bool is_file = true;
/117
};
struct MemoryTree final {
static constexpr bool is_virtual_memory = false;
static constexpr bool is_memory = true;
static constexpr bool is_file = false;
/17

51}

Source: [Link.
Which is why the ‘constexpr’ keyword is very powerful here for the Compile-Time Evaluation
Domain, we avoid the many pitfalls of the Run-Time Evaluation Domain.



https://github.com/nekernel-org/nekernel/blob/develop/src/kernel/KernelKit/CoreProcessScheduler.h#L78-L105

N

aos W

1.3 III: Memory Layout and the example of C++.

The Virtual Method Table (now defined as the VMT) is a big part of the problem, one may
illustrate the following:

/// /std:c++20 /Wall

#include <iostream>

class A

{

public:
explicit A() = default;
virtual “A() = default;

virtual void doImpl ()

50 F;

{
std::cout << "doImpl ()\r\n";
}
class B : public A
{
public:
explicit B() = default;
“B() override = default;
};

int main() {
B calllImpl;
callImpl.doImpl();
}

Source: Link.
The following can instead be done to achieve similar results using the Compile-Time Evaluation
Domain.

inline constexpr auto kInvalidType = O;

template <class Driver>

concept IsValidDriver = requires(Driver drv) {

{ drv.IsActive() && drv.Type() > kInvalidType 1;
};

Source: Link.
Now, the problem with freestanding development is that such feature may be abused, and it
is mitigated by following the TTPI.

1.4 1IV: The Three Prongs on Inheritance.

The TTPI is a boolean framework used to evaluate whether one may consider using a Object
Oriented programming language inside a freestanding program, consider the following:
1: Is this implementable with compile-time protocols/concepts?

2: Is this implementable without three trade-off costs?
Without violating the Runtime cost?
The Verification cost?
The Known-Ahead-Correctness cost?

3: Is this implementable without using a VMT?



https://godbolt.org/z/aK6Y98xnd
https://github.com/nekernel-org/nekernel/blob/develop/src/libDDK/DriverKit/c%2B%2B/driver_base.h

1.5 V: Compile-Time Vetting in a Freestanding Evaluation Domain.

The following concept makes sure that the ‘class T’ is vetted by the domain. Such properties
are called ‘Vettable’ such program in the domain makes sure that a ‘Container’ is truly deemed
fit for a Run-Time or Compile-Time Evaluation Domain. The ‘Vettable’ structure makes use
of template meta-programming in C+4++4 to evaluate whether a ‘Container’ shall be vetted.
Such system may look as such in a Compile-Time Evaluation Domain:

{ } 3

#define NE_VETTABLE static constexpr BOOL kVettable = YES;
#define NE_NON_VETTABLE static constexpr BOOL kVettable = NO;

template <class Type>

concept IsVettable = requires(Type) {
(Type::kVettable);

}s

/// This structure is vettable.
struct Vettable {

NE_VETTABLE;
Iy

/// This structure is unvettable.

;| struct UnVettable {

NE_NON_VETTABLE;

/// One example of a usage.

if constexpr (IsVettable<UnVettable>) {
instVet ->Vet () ;

} else {
instVet ->Abort () ;

}

Source: Link.

2 VI: Conclusion

Safe and correct development in a freestanding domain is indeed possible granted the above
concepts are applied and respected.

3 References

1. NeKernel.org (2025). NeKernel Operating System. Available at: https://nekernel.org

2. Sales, J., Tasker, M. (2005). Introducing EKA2. Symbian OS Internals. Wiley. Available
at: https://media.wiley.com/product_data/excerpt/47/04700252/0470025247 . pdf

3. Driesen, K., Holzle, U. (1996). The direct cost of virtual function calls in C++. OOPSLA
’96. ACM. DOI: 10.1145/236338.236369



https://github.com/nekernel-org/nekernel/blob/develop/src/kernel/NeKit/Vettable.h
https://nekernel.org
https://media.wiley.com/product_data/excerpt/47/04700252/0470025247.pdf

	The Three Principles of Freestanding Development.
	I: The Run-Time Evaluation Domain.
	II: The Compile-Time Evaluation Domain.
	III: Memory Layout and the example of C++.
	IV: The Three Prongs on Inheritance.
	V: Compile-Time Vetting in a Freestanding Evaluation Domain.

	VI: Conclusion
	References

